Corresponding states law for a generalized Lennard-Jones potential.

نویسندگان

  • P Orea
  • A Romero-Martínez
  • E Basurto
  • C A Vargas
  • G Odriozola
چکیده

It was recently shown that vapor-liquid coexistence densities derived from Mie and Yukawa models collapse to define a single master curve when represented against the difference between the reduced second virial coefficient at the corresponding temperature and that at the critical point. In this work, we further test this proposal for another generalization of the Lennard-Jones pair potential. This is carried out for vapor-liquid coexistence densities, surface tension, and vapor pressure, along a temperature window set below the critical point. For this purpose, we perform molecular dynamics simulations by varying the potential softness parameter to produce from very short to intermediate attractive ranges. We observed all properties to collapse and yield master curves. Moreover, the vapor-liquid curve is found to share the exact shape of the Mie and attractive Yukawa. Furthermore, the surface tension and the logarithm of the vapor pressure are linear functions of this difference of reduced second virial coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Consistent Technique for the Construction and Evaluation of the Three-Parameter Corresponding States Principles

A self-consistent approach for the evaluation of the existing three-parameter corresponding states principles of non-polar fluids and the calculation of the corresponding states parameters is presented. This self consistent approach is based upon the assumption that the contribution of the third parameter to the thermophysical properties is much smaller than the contributions of the first two p...

متن کامل

Thermal Diffusion in Lennard-jones Fluids in the Frame of the Law of the Corresponding States

This work is related to the definition of a reduced thermal diffusion coefficient thanks to numerical microscale molecular dynamics simulations. This cross transport process, also called Soret effect, couples mass flux and thermal gradient and is still largely misunderstood. For this study, we have applied a boundary driven non equilibrium molecular dynamics algorithm on Lennard-Jones spheres m...

متن کامل

Temperature-Dependent Dispersion Coefficients of Alkali Metals Using Equation of State

In this study, a temperature-dependent of the dispersion coefficients is calculated from equation state.The Lennard-Jones LJ (12-6-3) effective pair potential function and simple thermodynamic argumentwith the input PVT data of liquid metals are used to calculate the dispersion coefficients. The dispersioncoefficients ( , , ) 3 6 12 C C C are found to be a linear function of 1/T1+α , where T is...

متن کامل

The Effective Potential Function of the Liquid Mercury on the Metallic and Nonmetallic States by Using the Experimental Internal Pressure

The major reason for the prediction of thermodynamic properties of mercury lies in the fact that itsintermolecular interactions highly depend on temperature and density. Internal pressure is a good criterion toinvestigate the density dependence of the interatomic interactions. Because its physical base is a forcetending to close together the molecules that is intermolecular interactions, and as...

متن کامل

THE DENSITY PROFILES OF A LENNARD -JONES FLUID CONFINED TO A SLIT

The structure of fluids confined by planar walls is studied using density functional theory. The density functional used is a generalized form of the hypernetted chain (HNC) functional which contains a term third order in the density. This term is chosen to ensure that the modified density functional gives the correct bulk pressure. The proposed density functional applied to a Lennard-Jones...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 2  شماره 

صفحات  -

تاریخ انتشار 2015